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Abstract-This paper describes the coupled diffusion of heat and vorticity in a high temperature, low 
speed, gaseous vortex. The coupling is caused by both a radial convection of mass resulting from the 
unsteady heating of the gas and the temperature dependence of the gas properties. The numerical results 
were obtained by simultaneously solving the fluid heat conduction, continuity, and Navier-Stokes’ equa- 
tions on a digital computer using a finite difference technique. Solutions are presented for two vortex 
heating situations: (i) initially hot core with cold, irrotational, outer region and (ii) initially cold core with 
hot, irrotational, outer region. In order to better understand the coupling processes, two gas models are 
considered: (i) perfect gas with constant thermodynamic and transport properties and (ii) perfect gas with 
temperature dependent thermodynamic and transport properties. It was found that compressibility 
increases the rate of vorticity diffusion in the cold core vortex and heat diffusion in the hot core vortex 
over that of an incompressible vortex. Temperature dependent gas properties further increase the rates 

of diffusion of both heat and vorticity only in the cold core vortex. 

NOMENCLATURE _ . 

a, initial vortex core radius ; 
p, pressure ; 
Pr, Prandtl number; 

2, 
4 
T 
K, 
Vi 
z, 

radial position ; 
gas constant ; 
time ; 
temperature ; 
radial velocity ; 
azimuthal velocity; 
compressibility factor, 

PY density ; 
0, coefficient of thermal diffusivity ; 
t, time grid spacing 

Subscripts 
a, reference condition for nondimensional- 

ization (cold properties) ; 
0, initial value ; 

initial value in core ; 
initial value in irrotational region. 

Greek symbols INTRODUCTION 

numerical stability parameter, a = r/s2 ; 
HEAT-CONDUCTING vortiazs are an inherent 

:, circulation ; 
part of many high temperature gas flow proces- 

s, radial distance grid spacing ; 
ses such as the exhaust of pulsed jet engines, 

i, vorticity ; 
the blowing of high temperature jet exhaust 

8, heat flux potential; 
through leading edge slots on slender d&a 

4 coefficient of thermal conductivity; 
wings for augmenting li!I at low speeds, sus- 

l-4 coefficient of viscosity ; 
pension of nuclear fuels in nuclear rockets, and 

v, kinematic viscosity; 
the stabilization of plasmagenerators A periodic, 
vortex-like structure similar to that occurring 

t Present address : Department of Mechanical Engineer- 
in low speed flows is observed in the high -1 

ing, The Lowell Technological Institute, Lowell, Massa- perature wakes of hypervelocity bodies With 
chusetts. this increasing interest in high speed flight and 
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other high temperature flow processes, it is 
becoming very important to understand the 
behaviour of vortices when large temperature 
differences and real gas effects are present. 

It is well known that both heat and vorticity 
follow a diffusion-like process when they spread 
through a medium. Single diffusion processes 
for a large variety of boundary conditions have 
been extensively studied and are described 
in the excellent treatise by Crank [l] on that 
subject. Deissler [2] has numerically calculated 
the response of an isolated, incompressible, 
viscous vortex with an artificially imposed 
radial velocity present to step changes in both 
the azimuthal and radial velocities. However, 
there does not appear to be any work available 
in which the radial velocity comes about naturally 
from an unsteady heating process in the gas. 

Consider an isolated, rectilinear vortex im- 
mersed in an infinite fluid. The vorticity may 
be considered to be initially uniformly distri- 
buted as an instantaneous, cylindrical source. 
As time passes the vorticity spreads throughout 
the infinite region following a diffusion process. 
Now suppose there are also temperature varia- 
tions present in this flow field which cause heat 
to spread throughout the region. If the vortex is 
in a compressible medium, the unsteady density 
variations caused by the heating introduce a 
radial velocity which results in a convection 
of heat and vorticity. And if the temperatures 
are high enough, real gas effects further affect 
the diffusion processes by changing the local 
gas properties. 

Two diverse heating situations may be con- 
sidered. In the first, the core of the vortex is 
initially hot while the outside, irrotational 
region is cold. Thus we have a simultaneous, 
radially outward diffusion of instantaneous 
cylindrical sources of heat and vorticity. The 
radial velocity generated by the heating causes an 
inwardly directed convection of heat and vor- 
ticity in the core which opposes the primary 
diffusion processes. This heating case may be 
of interest when the vortex cores are formed from 
the rolling-up of the separated shear/shock 

heated boundary layer on a high speed pro- 
jectile. 

The second heating case is the reverse of the 
hot core vortex; i.e., an initially cold core and a 
hot, outside irrotational region. Here we have a 
simultaneous, radially outward diffusion of an 
instantaneous cylindrical source of vorticity, 
but a radially inward diffusion of heat into a 
cylindrical sink. The heating generates an out- 
wardly directed radial velocity in the core which 
convects heat and vorticity in the direction of 
the primary diffusion of vorticity but opposite 
to that of the heat. This type of vortex is of interest 
when the core is formed from cool fluid such as 
generated by the streaming of a high temperature 
gas over a cooled, bluff body. 

FORMULATION OF THE PROBLEM 

Equations 
The fluid behaviour is taken to be two- 

dimensional, unsteady, and axially symmetric. 
It is assumed that thermal conduction effects 
predominate over those due to viscous dissi- 
pation and compression. This assumption is 
valid for a not-highly-viscous fluid when the 
flow velocity and its gradients are small. If in 
addition, large temperature differences are also 
present, the assumption of negligible shear and 
compression heating is even better. A low speed, 
vertical flow with large temperature gradients 
meets this criterion very well. 

Under the above conditions, the heat con- 
duction equation for a compressible fluid with 
variable properties written in polar coordinates 
is 

where V, is the radial velocity and u is the local 
thermal diffusivity of the gas. The temperature 
dependent thermal conductivity has been 
brought outside the differential operators by 
using the substitution, 

0 = ‘L(T’)dT’ 
d 
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to transform the dependent variable from tern 
perature, T to heat flux potential, 0. 

The ~ontin~ty equation is 

The equation of state for a perfect gas with 
variable composition is 

P = pZRT (3) 

where P is the pressure and 2 is the compressi- 
bility factor which introduces any effects due 
to changes in chemical composition. 

The azimuthal Navier-Stokes equation is 

where V, is the azimuthal velocity. 
A fourth equation containing the pressure is 

now required. Normally, the radial Navier- 
Stokes’ equation would be used. 

The radial pressure gradient is seen to be 
innuendo by the a~~uthal velocity, the radial 
velocity and its derivatives, and the viscosity 
and its gradient. It is assumed that we are 
dealing with low speed (small circulation) 
vortices, and thus the azimuthal velocity will 
cause negligible changes in the pressure. Further- 
more, we will assume that the radial velocity 
and its derivatives and the viscosity and its 
gradient do not appreciably contribute to the 
radial pressure gradient. The latter assumption 

must be checked because of the very large tem- 
perature gradients in the flow which could con- 
ceivably generate substantial radial accelera- 
tions and viscosity gradients. Based on these 
assumptions the density variations are then 
due mainly to heat conduction/temperature 
effects ; i.e., the effects of dynamics/pressure on 
the density variation are negligible. We then 
can assume, for the calculation of the density, 
that the pressure is constant throughout the 
flow field. This assumption allows the deter- 
mination of the temperature, density, and 
radial velocity to be made independently of the 
dynamics of the flow. The dynamics, however, 
are coupled to the preceding results through the 
density, radial velocity, and temperature de- 
pendent gas properties, This one-way un- 
coupling af the thermodynamics from the 
dynamics results in a great simplification in the 
n~eri~~ solution. 

The vorticity, <, is a derived quantity ob- 
tainable directly from the azimuthal velocity 
distribution ; i.e., 5 = (l/r)@/dr)(r V,) 

An alternate formulation of the problem would 
be to derive a vorticity transport equation in 
which the dependent variable is vorticity rather 
than azimuthal velocity. This vorticity transport 
equation must be valid for a compressible fluid 
with variable viscosity. Solution of this equation 
would yield the vorticity directly rather than 
having to first calculate the azimuthal velocity 
dist~butio~ and then use it to calculate the 
vorticity. It is difficult to tell whether this 
approach would either reduce the complexity of 
the numerical solution or increase its accuracy. 

Boundary conditions for the temperature, 
radial velocity, and azimuthal velocity must be 
specified on the t = 0 and r = 0 axes. Although 
any initial distribution of temperature and vor- 
ticity may be used, a step distribution is used 
here with the discontinuity occurring at the 
core edge. The assumption of no sources or 
sinks of heat at the center of the vortex requires 
that the first spatial derivative of temperature 



at the origin must always be Nero. Thus, the 
required initial conditions for the temperature 
are : 

where a is the initial radius of the vortex core. 
Similarly, since there are no so~ces or sinks 

of mass at the center of the vortex, &e radid 
velocity at the origin must always be zero. The 
initial radial velocity may be arbitrarily specified, 
but to demonstrate the effect of the unsteady 
heating on its generation, it will be taken as zero. 
The boundary ~~d~~ous on the ial velocity 
are &en : 

The initial azimuthal velocity distribution is 
taken to be that which rest&s in a vorticity 
~s~bu~on whi& is uniform and ~~~n~at~ 
in the vortex core, The azimuthal ~~~o~~ty at the 
center of the vortex is always zero. Thus, 

w&x f, is fbe ix&al ~~r~~at~~~ d the vortex 
The equations of motion and boundary 

conditions are now nondimensiotmlized with 
respe@ to initial vortex core radius and initial 
gas properties bang in the of?& region of the 
vortex The ~o~~~en~ou~ quantities are 
denoted by circumflexed symbols, and the sub 
script, “Co”, refers to the reference conditions. 

state, 

where Pr, is the reference PrmdtJ number. 
The simultaneous partial differential equau 

tions fg)-flt) with the uon~~ensjona~~ 
vefsion of the bou&ary ~~~~~ons f$-(‘j”) 
represent the f~~u~atio~ of the pro&m of 
coupled diffusion of heat and vorticity in an 
isolated, rectihne~r, real gas vortex. Since the 
diffusion processes discussed in this paper deal 
with a highly non&near system the equations 
~es~b~ng this prob&m must be ~u~r~~~~ 
integrated for ‘&r&in speG&c earnpIes 

As the gas models become more complex, the 
generality of the solutions becomes more rew 
stricted. In the oonstant property or ideal gm 
mode& the type of gas Is spe&fi& only through 
the re&zence Prandtl number. Tfris Prandtl 
number specification is required since the dif- 
fusivities for heat and vorticity are related 
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through the Prandtl number, and the dimen- 
sionless time appearing on all the plots is based 
on the reference thermal diffusivity. The tem- 
perature ratio must also be specified, because 
the magnitude of the radial convection contri- 
bution to the overall diffusion process is de- 
termined by the temperature/density variations. 
In the variable property or real gas model, the 
chemistry of the gas as well as the absolute 
temperature levels must be specified because of 
the dependence of the gas properties and density 
on temperature. We have used the statistical 
mechanical calculations of Hansen [3, 41 for 
the high temperature properties of air. Although 
more recent and possibly more accurate trans- 
port property calculations are available, Hansen 
presents his calculations in a curvelit form which 
is ideal for use on a digital computer. 

It should be noted that both the thermal 
diffusivity and kinematic viscosity are not cons- 
tant in the ideal gas model. They change in the 
ideal gas model because of density variations 
and change even further in the real gas model 
because of variations in the thermodynamic 
and transport properties. 

A brief discussion of the numerical integration 
technique is given in the appendix. A more 
extensive discussion of the numerical method 
of solution is contained in the doctoral disser- 
tation of Mironer [S]. 

RESULTS 

The results of the numerical solution of 
equations (8)-(11) for a specific set of boundary 
conditions are presented in this section in the 
form of plots showing the variation of tempera- 
ture, radial velocity, and vorticity with position 
and time. Sets of these three plots are presented 
for each of the two vortex heating cases and for 
both of the gas models. The radial velocity plots 
are included for completeness and to indicate 
the contribution of the radial convection to the 
overall diffusion processes. Also, crossplots 
comparing the diffusion processes at the center 
of the core for the various gas models in both the 
vortex heating cases are presented. 

All quantities have been non-dimensional- 
ized as indicated on each plot. Air is used as the 
fluid for all calculations The cold initial tem- 
perature is taken to be 500°K which gives a 
Prandtl number of O-738. For a vortex having an 
initial radius of 0.5 cm, and an initial cold 
region temperature of 5OO”K, 1 unit of dimen- 
sionless time corresponds to about 05 set, 
and 1 unit of dim~sionle~ velocity corresponds 
to about 1 cm/s. 

In the incompressible, constant property 
gas model no coupling exists between the heat 
and vorticity diffusion processes. The results for 
the diffusion of an initially uniformly distributed, 
inst~~neous cylinders source in an infinite, 
constant property, incompressible medium apply 
for both diffusion processes. Carslaw and Jaeger 
[6] present a plot for this type ofdiffusion process 
using the numerically obtained results of Masters 
[7]. The curves of the temperature and vorticity 
at the same times are simply shifted from one 
another, depending on which diffusivity is 
used in the non-dimensional time. These plots 
will not be reproduced here; however, reference 
will be made to them when discussing the results 
of the coupled diffusion problem 

In the perfect gas, constant property gas 
model (ideal gas) results are presented for a 
15 : 1 initial temperature ratio across the vortex, 
In the perfect gas, variable property gas model 
(real gas) solutions have been carried out for a 
7500°K hot region and 500°K cold region, 
which is also a 15 : 1 temperature ratio. 

Hot core vortex 
Ideal gas model, Figs. 1, 2, and 3. The low 

density core cools rapidly while the dense, 
outer gas is heated very little because of the 
relatively small amount of heat initially con- 
tained in the core. The ideal gas model core 
cools about ten times faster than that of the 
incompressible vortex. Since the core is cooling 
and becoming more dense, there must be an 
inward convection of mass from the outer region 
to furnish the extra gas required. The outside 
region in the vicinity of the core edge is receiving 
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Numbers on curves ore dmwx&nless time, 02 

Dtmensionless radio1 position, r/u 

FIG. 1. Temperature history for ideal gas, hot core vortex. 
Initial temperature ratio, TJT, = 15. 

Numbers on curves are dimensionless time, 
g 

O2 

too- 

50- 

o- 

Dimensionle~ mdiol position, I/Q 

FIG. 2 Radial velocity history for ideal gas, hot core vortex. 
Initial temperature ratio, T,/T, = 15. 
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I 
0 05 

Numbers on curves are dimensionless time, 
Q,t 

02 

Dimensionless radial position, r/a 

RG. 3. Vorticity history for ideal gas, hot core vortex. 
Initial temperature ratio, T,/T, = 15; reference Prandtl 

number, Pr, = 0.738. 

Numbers on axves are dimensionless hme. 
OoJf 

(72 

0 05 I.0 15 20 2.5 30 

Dimensionless radial position, r/o 

RG. 4. Temperature hiStOy for red gas, hot core Vortex. 

Initial core and outside temperatures, Tl = 7500°K and 
T2 = 500°K; gas-air; pressure 1 atm. 
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Numbers on curves ore dimensionless time, s 

-loo 0 
I 

0.5 
I I I 1 I 
IO l-5 20 25 3.0 

Dimenslonless radial positlon, r/o 

RG. 5. Radial velocity history for real gas, hot core vortex. 
Initial core and outside temperature: 7” = 7500°K and 

T2 = 500°K ; gas-air; pressure-l atm. 

Numbers on curves are dimensiahss time, -$ 

Dimensionless radial pcsitlon, r/a 

RG. 6. Vorticity history for real gas, hot core vortex. Initial 
core and outside temperatures: T1 = 7500°K and 
T, = 500°K; gas-air; pressure-l atm.; reference Prandtl 

number, Pr, = 0.738. 
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heat from the hot core and its density falls 
requiring an outwardly directed convection to 
carry away the excess gas. It will be seen that in 
both heating cases and for both gas models the 
radial velocity in the region of the core always 
opposes the primary diffusion of heat. At large 
radial distances where the heat diffusion process 
has not penetrated significantly, the radial 
velocity has a potential decay. In the beginning 
of the vorticity diffusion process, the large 
inwardly directed radial velocity convects vor- 
ticity from the outer region of the core into its 
center and dominates the outwardly directed, 
primary diffusion. However, as time progresses, 
the radial velocity decreases, and the primary 
diffusion process takes over. The initial “pump- 
ing” of vorticity into the center of the core and 
the decreasing kinematic viscosity due to the 
increasing density slows the overall diffusion 
of vorticity to the extent that it takes about the 
same time as that required for completing the 
vorticity diffusion process in the incompressible 
vortex. 

Real gas model, Figs. 4, 5, and 6. The low 
density core cools more rapidly in the beginning 
of the heat diffusion process than the ideal gas 
core due to the very high value of the thermal 
conductivity. The thermal conductivity is so 
high that the temperature gradients are very 
flat; however, in the outside region, where the 
conductivity is low, the gradients are quite 
steep. In the core region the vorticity distribution 
exhibits the same general behaviour as in the 
ideal gas solutions ; i.e., early in the diffusion 
process, the very large inwardly directed radial 
convection results in a net “pumping” of vor- 
ticity into the center of the core. The vorticity 
accumulation in the center of the core is not as 
large as in the ideal gas vortex due to the counter- 
acting effect of the very high kinematic viscosity 
in the core which tends to rapidly diffuse the 
vorticity outward In the outside region, the 
vorticity is slightly negative due to the de- 
creased velocity there. The fluid particles in this 
region are rotating about their centers of mass 
in a direction opposite to those in the region of 

positive vorticity, while the centers of mass of all 
the fluid particles continue to move with an 
azimuths velocity of the same direction. The 
vorticity diffusion process takes about the same 
length of time as that for the ideal and incom- 
pressible gas vortices. 

Figures 7 and 8, show comparisons of the 
core center temperature and vorticity distri- 
butions for the three gas models. The incom- 
pressible vortex core begins to cool considerably 
later than either of the compressible vortices 
and also requires a considerably longer time 
to cool. The vorticity “pumping” effect is 
largest for the ideal gas vortex, but due to count- 
eracting mechanisms, all gas models of the 
hot core vortex require about the same amount 
of time for the diffusion to be completed 

Cold core vortex 
Ideal gas model, Figs. 9,10, and 11. The dense 

core heats up very slowly because of the large 
mass of cold gas in it and the outwardly directed 
radial convection of heat which opposes the 
primary, inwardly directed diffusion. It takes 
about the same time for the core to be heated to 
near the outside temperature as the incom- 
pressible vortex. The vorticity diffuses about ten 
times faster than in the incompressible vortex 
because of the outwardly directed radial velocity 
which augments the primary diffusion and the 
increasing kinematic viscosity due to the de- 
creasing density. 

Real gas model, Figs 12, 13, and 14. In the 
early part of the heat diffusion process, the 
thermal diffusivity is very much lower in the cold 
core than in the hot, outside region. The low 
thermal di~usivity acts as a heat insulating 
mechanism for the core, resulting in very steep 
temperature gradients. This low thermal diffusi- 
vity along with the high density core and the 
large radial convection which opposes the 
inwardly directed primary diffusion of heat 
combine to keep the core temperature low in 
the beginning of the diffusion process. However, 
as times passes and the heat penetrates signiti- 
cantly into the core, the thermal diffusivity 
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St 
Dimensionless trne. 7 

FIG. 7. Comparison of center of co= temperature histories 
in the hot core vortex. 

Dimenslonl~s time, 27l 
(72 

FIG. 8. Comparison of center of core vorticity histories in the 
hot core vortex. 
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00,25 

Numbers on curves we dimensionless time, 5 

0 o-5 IO 15 20 2-5 3.0 

Dimensionless radial position, r/u 

I++. 11. Vorticity hlstory for ideal gas, cold core vortex. 
Initial temperature ratio, T,/T, = 15; reference Ptgndtl 

number, Pr, = 0.738. 

Numbers on curves are dimensionless time, 2 
r7* 

DimensIonless radial position, r/a 

FIG. 12. Temperature history for real gas, cold core vortex. 
Initial core and outside temperatures; Tl = 500°K and 

T2 = 7500°K : gas-air; pressure-l atm. 
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Numbers on curves ore dimensionless time, s2 

5 
E -5o- 

a 

-100~ I 

05 
I I I I 
IO I.5 2.0 2.5 30 

Dimensionless radial position. r/o 

FIG. 13. Radial velocity history for real gas, cold core vortex. 
Initial core and outside temperatures, T1 = 500°K and 

T2 = 7500K; gas-air; pressure-l atm. 
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E" 02 li 

at 
Numbers on curves are dimensionless time, L 

02 

0 0.5 I.0 15 2.0 2.5 30 

DimensIonless radial position, r/a 

lh. 14. Vorticity history for real gas, cold core vortex. 
Initial core and outside temperatures: T1 = 500°K and 
T, = 7500°K; gasair; pressun+-1 atm. ; referenoe Bandtl 

number, Pr, = 0738. 
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06- 

04- 

02- 

%+ 
Dlmenslonless time, --g- 

Fkc. 15. Comparison of center of core temperature histories 
for the cold core vortex. 

Real gas’ 

DimensIonless time, AL! 
02 

RG. 16. Comparison of center of core vorticity histories for 
the cold core vortex. 
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rises, the density falls, and the radial convection 
falls off causing the core to heat up faster and 
faster. The only ~o~t~r~,cting mechanism to 
this accelerated heating d the core is the in- 
creasing specific heat which requires increasingly 
more heat to raise the core temperature by a 
given amount. The flattening of the temperature 
(density) gradients in the outside region due to 
the large thermal conductivity there keeps the 
radial velocity everywhere outwardly directed. 
The vorticity diffusion is very much faster 
than that in the ideal gas model because of the 
rapidly increasing kinematic viscosity due to the 
decreasing density and increasing viscosity. 

Figures 15 and 16 compare the core center 
temperature and vorticity distributions for the 
three gas models. In the ideal gas vortex, the 
outward radial convection of heat nearly offsets 
the increase in the core heating rate due to its 
decreasing density. The rapidly increasing 
thermal conductivity in the core is the main 
effect in increasing the heat diffusion rate in the 
real gas vortex over that of the ideal gas vortex. 
The separate effects of radial convection and 
increasing viscosity are shown quite clearly in 
the vorticity plot 

CONCLUSIONS 

The following general conclusions are drawn 
from the theoretical analysis of a two-dimen- 
sional, isolated vortex with moderate circulation 
and initially large temperature differences be- 
tween the core and outside regions. 

(i) Compressibility substantially increases the 
vorticity diffusion rate for the cold core vortex 
and the heat dit&sion rate for the hot core vortex, 
but has little effect on t& heat diffusion rate for 
the cold core vortex and the vorticity diffusion 
rate for the hot core vortex. 

(ii) Temperature dependent gas properties 
substantially increase the heat and vorticity 
diffusion rates in the cold core vortex, but have 
littie effect on either diffusion process in the hot 
core vortex, 

The following tabb summarizes the approxi- 

mate dimensionless diffusion times associated 
with the various vortex heating situations and 
gas models described in this paper. 

-_- 
Incompressible 

hot core 

-I- 
Hait Vorticity 

diffusion diffusion 

10.0 10.0 
fdeai gas, 

hot core IQ 10.0 
Real gas. 

hot care 
Incompressible, 

cold core 
Ideal gas, 

cold core 
Real gas, 

cold core 
--“- 

1.0 10.0 

10.0 10.0 

fO.0 I.0 

I+0 0-t 

The validity of the assumption neglecting the 
effects of the radial acceleration and viscosity 
gradients an the pressure gradient has been 
checked by using the constant pressure distri- 
butions of radial velocity, density3 and viscosity 
to Cal&ate the pressure gradient from the radial 
Navier-Stokes’ equation. Using the equation 
of state, (3), in the form 

AO AP Ah(ZT1 
--1-E 

P p 
--*> 

the ~ont~bution of the temperatu~~~ompr~s- 
sibility variation completely dominated the 
contnbution from the pressure variation. Even 
in the beginning of the diffusion process when 
the density is changing very rapidly at the edge of 
the core and generating very large radial velocity 
changes, the effect of the pressure on the density 
is negligible, 

The authors wish to tftang the Syracuse University 
Computing Centre for use of their facilities and for sponsor- 
ing, under NSF Grant GP-I 137, the large amount of 
digital computer computations. 
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APPENDIX 

Numerical Solution of Equations of Motion 

Finite difference representation 
The first step in the simultaneous numerical 

solution of the differential equations is the re- 
placement of the various differential coefficients 
by truncated expansions of finite differences. 
A rather judicious selection of the type of 
difference expansion must be made in order to 
ensure a stable numerical solution and also yield 
the desired quantities for use in the other equa- 
tions. The stability considerations are discussed 
in various texts on numerical analysis such as 
Noble [S]. 

The scheme of the numerical solution tech- 
nique is as follows. The time/distance solution 
space is divided into a rectangular mesh of nodal 
points in which successive time nodal points are 
separated by a time, r, and successive spatial 
nodal points by a distance, E. The location of the 
various nodal points in the solution space is made 
by the set of coordinates, (m, n), where P = ME 
and E = nz. 

Since we are dealing with an infinite region, a 
marching pattern is employed in which by using 
quantities evaluated at previous nodal points, 
new quantities are calculated at advanced 

nodal points The direction of march is to calcu- 
late quantities along a time line (n = constant), 
moving from the origin outward (m increasing). 
When all quantities are calculated at all the 
nodal points possible on that time line, the 
calculation then proceeds to the next time line, 
starting once again at the origin and moving 
outward. 

The finite difference representation of the heat 
conduction equation is obtained by replacing 
the time derivative by the first term of a forward 
difference expansion, the first spatial derivative 
by the first term of a mean difference expansion, 
and the second spatial derivative by the first 
term of a central difference expansion. The heat 
conduction equation then becomes 

@(m,n + 1) = ib(m,n) 

2m - 1 
+ K ) p+ 

m 
AK(m,nj (m - Lnl} 
0 (m, n) 

+’ [l - 2ao(m,n)]@(m, n) (12) 

where a = 21~~ and m, n are integers denoting the 
coordinates of the various nodal points. For 
simplicity, the circumflexes have now been 
dropped, but all quantities are still nondimen- 
sional. 

In order to obtain the radial velocity at the 
desired nodal point and also a stable numerical 
solution of the continuity equation, the time 
derivative is replaced hy the first term of a for- 
ward difference expansion evaluated at the 

(m - 1, n) nodal position and the spatial de- 
rivative by the first term of a forward difference 
expansion evaluated. at the (m - 1, n + 1) 
nodal position. Solving for the radial velocity 
at the next spatial nodal point, one obtains 

m-l 
VAm, n + 1) = m 

p(m 

( >(( 

- i, n + 1) 

p(m, n + 1) > 
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x v,(m- l,n+ l)+ (g[(fg+) (2) This new value of 8 is converted to 

temperature using a piecewise straightline fit to 

p(m - 1, n + 1) - ( p(m,n+ 1) II 
the heat flux uotential calculations for air from 

(13) PI. - 
(3) This temperature is used to obtain Q, p, and 

Finally, the azimuthal Navier-Stokes equation Z using curve-fits developed by Hansen [3]. 
is converted to finite difference form in an exactly (4) Z and Tare used in equation (10) to obtain p. 
similar manner as the heat conduction equation, (5) p and previously calculated values of p 

Ve(m, n + 1) 
and V, are used in equation (13) to calculate the 
new V, 

This completes the thermodynamics and 

+ eg(m,n)}- eK(m,n,l Vdrn + 1,n) 

property calculations at the new nodal point. 
Now the dynamics are calculated at this point. 

(6) Using previously calculated values of 
V,, V, and p in the azimuthal Navier-Stokes 
equation (14), V, is calculated at the new nodal 
point. 

-e$(m,n))+EV.(m,n;l Vdm-1,n) 
(7) t is now calculated from eqllation (15) 

using previously calculated values of V, 

Pr 
+ l-2a” r p(m, n) 1 

AmY n) Stability and accuracy of solution 

+ f g (m, n) II 
It can be shown [8] that to ensure stability 

I$@, n), (14) 
in the numerical solution of a one-dimensional 
diffusion type equation without convection, 

where a c 1/2a. This requirement is simply extended 
to variable diffusivity diffusion problems by 

z(m,n) = 
CL(rn + 1, n) - p(m - 1, n) using the maximum value of the diffusivity 

22 occurring in the flow field under consideration. 

The vorticity is obtained by using the first term 
This requirement has been empirically checked 

of a mean difference expansion to represent 
in our computer solutions and found to be valid. 

the spatial derivative, 
In the beginning of the numerical solutions, 

due to the discontinuity in density, the radial 
1 m+l 

t(m,n)=- - 
K > 

-TGl,:” 1,n)l. (15) 

velocity is excessively high and causes the solu- 
, 

E tion to oscillate. In order to overcome this, 
the radial velocity is artificially suppressed 
for the first few time lines of the solution until 
the density discontinuity has sufficiently 
smoothed out to give a stable solution. 

Method of solution The effect of the mesh size on the accuracy of 
The following order of solution is followed the solution was studied by calculating solutions 

at each nodal point using previously calculated for the incompressible gas model in which E was 
or boundary quantities. systematically reduced from 0.5 to 0.05. These 

(1) The heat conduction equation, equation solutions were then compared with the plotted 
(12), is evaluated using values of 8 and V, from results for this gas model given in Carslaw and 
the previous time line to obtain the value of 0 Jaeger [6] and also with the simple, closed-form 
at the new nodal point. solution to the diffusion equation for this gas 

C 
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model which may be obtained only at the center unreasonable to hope that this accuracy would 
of the vortex (& = 0). It was found that also extend to the more complicated gas models 
E = 0.1 gave excellent agreement and yet did since the values of the pertinent variables are 
not prohibitively increase the overall calculation not changed that drastically from those of the 
time. Based on this comparison, it might not be incompressible gas model. 

R6surru-Cet article d&it la diffwon couplee de la chaleur et de la vorticltt dam un tourblllon gazeux B 
hauk temperature etafaible vitesse. Le couplage estprovoqueala fois parla convection radialemassique 

provenant du chauffage instantionnaire du gaz et par la dependance de la temperature en fonction des 
prop&es du gaz. Les rdsultats numeriques ont tte obtenus en resolvant simultanement les equations de 
conduction de la chaleur, de continuite et de Navier-Stokes dam le fluide sur une calculateur numerique 
en employantunetechnique de differencesfinies. Des solution sontpresentees pour deux cas de chauffage 

du tourbillon: 1”) un noyau initialement chaud avec une region exttrieure irrotationnelle froide et, 2”) un 
noyau initialement froid avec une region exterieurc irrotationnelle chaude. Afin de mieux comprendm les 
processus de couplage, deux mod&es gazeux sont constderts: 1.) un gaz parfair avec des proprietes 
thermodynamiques et de transport constantes et 2”) un gaz parfait avec des proprietes thermodynamiques 
et de transport dependant de la temperature. On a trouvir que la compressibilite augmente la vitesse de 
diffusion de la vorticitt dans le tourbillon B noyau froid et de la diffusion de chaleur dans le tourbillon h 
noyau froid et de la diffusion de chaleur dans le tourbillon a noyau chaud par rapport a un tourbillon 
incompressible. De plus. la dtpendance des proprittes du gaz en fonction de la temperature augmente les 

vitesses de difussion & la fois de la chaleur et de vorticite seulement dans le tourbillon froid. 

Zlsammenfaasrmg-Der Aufsatz beschreibt die gekoppelte Ubertragung von Warme und Drehimpuls in 
einem Gaswirbel hoher Temperatur und niedriger Geschwindigkeit. Die koppelung entsteht eimnal durch 
die radiale Konvektion auf Grund der ungleichfiirmigen Erhitzung und zum anderen durch die Tempera- 
turabhangigkeit der Gaseigenschaften. Es wurden numerische Ergebnisse erzielt durch die simultane 
Lijsung der Wlrmeleitungs-, der Kontinuitiits- und der Navier-Stokes’schen Gleichungen auf einer digi- 
talen Rechenanlage mit Hilfe einer Differenzenmethode. Es sind Lijsungen fur zwei FLlle der Aufheizung 
eines Wirbels wiedergegeben: 1) anfangs ein heisser Wirbelkem mit kalter, nichtrotierender lusserer 
Schicht und 2) anfangs kalter Wirbelkem mit heisser, nichtrotierender lusserer Schicht. Urn die Koppelungs- 
vorgange besse zu durchleuchten, wurden zwei Gasmodelle betrachtet: 1) ideates Gas mit konstanten 
thermodynamischen und Transporteigenschaften und 2) ideales Gas mit temperaturhhangigen thermo- 
dynamischen und Transport-Eigenschaften. Es zeigte sich, dass die Kompressibilitiit im Falle des kalten 
Wirbelkerns die Warmeiibertragung steigert verglichen mit einer Wirbelstrdmung in einem inkompressi- 
blen Medium. Die Temperaturabhiingigkeit der Gaseigenschaften steigert den Transport von Warme und 

Impuls nur im Falle des kalten Wirbelkems. 

.kHHOT&nMn--B CTaTbE! OlIIICbIBaeTCR CBR:laHHiIR @I~l$y3IIRTeIIJa II:3anuXpeHHOCTII B B6ICOKO- 

TeMIIepaTypHOM, PaaOBOM BIIXpe IIpII MaJIOfi CKOpOCTII ~BIKKeHIifI raaa. CnRL3b BbIabIBaeTCII 

pa~IIa.nbHoii KoHBeIturieiiMaccbr~pe~y.rIbTaTe IIecTauIIoHapKororIarpeBara:3aI1TeMnepaTyp- 

IIO~~aB~CIIMOCTbH,CRO~CTB~a:~a.~~~C~eHHbIepe3~~bTaTbI IIOJIyYeHhI IIyTeM O~HOBpCMCHHOIW 

pOIIIeHKII J'paBHeHIli? 3HeprIfII lfepa:3phIBHOCTII II ypaBI?eIIIIti HaBbC-CToKCa Ifa uII@pOBOfi 

BbrwcnuTenbKofi MaIIIKHe c nonomhro MeTosa KoIIe'lHbIXpasIIocTelt. lfpe~cTan.neIrhI peuIeKIiK 

;InK fisyx cnyqaeB uuxpenoro IIarpeBa: (1) nepeoHawnbK0 ropnsee Hzpo c Xono~Hoir, 

'tIeBpamaIome8cn BKemrIeZi orinacThI0 II (2) nepnoaaqanbuo xono;luoe nap0 c ropfrqeti tu- 
BpamaIOmetiCII BHeIIIHeii 06JIaCTbIO. tfTO6bI JIyWIe IIOIIqTh CllIIab IlpOutV'COn, paCCMaTpII- 

BaIOTCn((1)II~eaJIbKbIi ra2 C IIOCTOIIFiIIhIMII TephIORsHaMIIseCKIIMII CBO$iCTBaMK II CBOizCTBaMll 

nepenoca II (2) II;leanha+ rao c TepMo;lIIHaMclsecKlrhlrI CB~I%CTR~MII II CnotirTnaMII IIepeIIoca, 

:3aBIiCuMbIMII OT TCMIIepaTypbI. HaiQeHo. 'IT0 ('SKIiMaeMOCTb vBC.Ill'iIIBaCT CKOpOCTb ~H@@y3IiIi 

3aBRXpeHHOCTR B BKXpe C rOpR'IiIM RApOM II0 CpaBHeHIIIo I: oTOii CKOpOCTbIO B CJIy'IaC BIIXPH 

B HeCH(KMaeMOM I'aaC. 3aBIICIIMhIe OT TeMIIepaTypbI CBOiiCTBa I-aSa yBC~WIIiBaICiT CKOpOCTII 

~II@l#iy:3IIII KaK TeIIJIa, TaK II :laBIIXpCHHOCTIi TOJIbKO I3 XOJIOJJHOM BIIXpe. 


