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Abstract—This paper describes the coupled diffusion of heat and vorticity in a high temperature, low
speed, gaseous vortex. The coupling is caused by both a radial convection of mass resulting from the
unsteady heating of the gas and the temperature dependence of the gas properties. The numerical resuits
were obtained by simultaneously solving the fluid heat conduction, continuity, and Navier-Stokes’ equa-
tions on a digital computer using a finite difference technique. Solutions are presented for two vortex
heating situations: (i) initially hot core with cold, irrotational, outer region and (ii) initially cold core with
hot, irrotational, outer region. In order to better understand the coupling processes, two gas models are
considered: (i) perfect gas with constant thermodynamic and transport properties and (ii) perfect gas with
temperature dependent thermodynamic and transport properties. It was found that compressibility
increases the rate of vorticity diffusion in the ¢old core vortex and heat diffusion in the hot core vortex
over that of an incompressible vortex. Temperature dependent gas properties further increase the rates
of diffusion of both heat and vorticity only in the cold core vortex.

NOMENCLATURE
a, initial vortex core radius;
P, pressure;
Pr, Prandtl number;

r,  radial position;

R, gas constant;
t, time;
T, temperature;
V,, radial velocity;
V,, azimuthal velocity;
Z, compressibility factor.
Greek symbols
@, numerical stability parameter, « = 1/¢2;
I', circulation;

g, radial distance grid spacing;
{, vorticity;

©, heat flux potential ;
4,  coefficient of thermal conductivity;
u,  coefficient of viscosity;

v,  kinematic viscosity;

_ 1 Present address: Department of Mechanical Engineer-
ing, The Lowell Technological Institute, Lowell, Massa-
chusetts.

p,  density;
g, coefficient of thermal diffusivity;
1, time grid spacing.

Subscripts
o0, referenceconditionfornon-dimensional-
ization (cold properties);
initial value;
initial value in core;
2,  initial value in irrotational region.
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INTRODUCTION
HEAT-CONDUCTING vortices are an inherent
part of many high temperature gas flow proces-
ses such as the exhaust of pulsed jet engines,
the blowing of high temperature jet exhaust
through leading edge slots on siender deita
wings for augmenting lift at low speeds, sus-
pension of nuclear fuels in nuclear rockets, and
the stabilization of plasma generators. A periodic,
vortex-like structure similar to that occurring
in low speed flows is observed in the high tem-
perature wakes of hypervelocity bodies. With
this increasing interest in high speed flight and
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other high temperature flow processes, it is
becoming very important to understand the
behaviour of vortices when large temperature
differences and real gas effects are present.

It is well known that both heat and vorticity
follow a diffusion-like process when they spread
through a medium. Single diffusion processes
for a large variety of boundary conditions have
been extensively studied and are described
in the excellent treatise by Crank [1] on that
subject. Deissler [2] has numerically calculated
the response of an isolated, incompressible,
viscous vortex with an artificially imposed
radial velocity present to step changes in both
the azimuthal and radial velocities. However,
there does not appear to be any work available
in which the radial velocity comes about naturally
from an unsteady heating process in the gas.

Consider an isolated, rectilinear vortex im-
mersed in an infinite fluid. The vorticity may
be considered to be initially uniformly distri-
buted as an instantaneous, cylindrical source.
As time passes the vorticity spreads throughout
the infinite region following a diffusion process.
Now suppose there are also temperature varia-
tions present in this flow field which cause heat
to spread throughout the region. If the vortex is
in a compressible medium, the unsteady density
variations caused by the heating introduce a
radial velocity which results in a convection
of heat and vorticity. And if the temperatures
are high enough, real gas effects further affect
the diffusion processes by changing the local
gas properties.

Two diverse heating situations may be con-
sidered. In the first, the core of the vortex is
initially hot while the outside, irrotational
region is cold. Thus we have a simultaneous,
radially outward diffusion of instantaneous
cylindrical sources of heat and vorticity. The
radial velocity generated by the heating causes an
inwardly directed convection of heat and vor-
ticity in the core which opposes the primary
diffusion processes. This heating case may be
of interest when the vortex cores are formed from
the rolling-up of the separated shear/shock
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heated boundary layer on a high speed pro-
jectile.

The second heating case is the reverse of the
hot core vortex; i.e., an initially cold core and a
hot, outside irrotational region. Here we have a
simultaneous, radially outward diffusion of an
instantaneous cylindrical source of vorticity,
but a radially inward diffusion of heat into a
cylindrical sink. The heating generates an out-
wardly directed radial velocity in the core which
convects heat and vorticity in the direction of
the primary diffusion of vorticity but opposite
to that of the heat. This type of vortex is of interest
when the core is formed from cool fluid such as
generated by the streaming of a high temperature
gas over a cooled, bluff body.

FORMULATION OF THE PROBLEM

Equations

The fluid behaviour is taken to be two-
dimensional, unsteady, and axially symmetric.
It is assumed that thermal conduction effects
predominate over those due to viscous dissi-
pation and compression. This assumption is
valid for a not-highly-viscous fluid when the
flow velocity and its gradients are small. If in
addition, large temperature differences are also
present, the assumption of negligible shear and
compression heating is even better. A low speed,
vortical flow with large temperature gradients
meets this criterion very well.

Under the above conditions, the heat con-
duction equation for a compressible fluid with
variable properties written in polar coordinates
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where V, is the radial velocity and o is the local
thermal diffusivity of the gas. The temperature
dependent thermal conductivity has been
brought outside the differential operators by
using the substitution,

6 = 6[T,l(T') a1’
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to transform the dependent variable from tem-
perature, T, to heat flux potential, @.
The continuity equation is

J 8
P (pr) + a (pr¥)) = 0. )

The equation of state for a perfect gas with
variable composition is

P = pZRT 3

where P is the pressure and Z is the compressi-
bility factor which introduces any effects due
to changes in chemical composition.

The azimuthal Navier—Stokes equation is

2
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where ¥ is the azimuthal velocity.

A fourth equation containing the pressure is
now required. Normally, the radial Navier—
Stokes’ equation would be used,

v, v w2 opP
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The radial pressure gradient is seen to be
influenced by the azimuthal velocity, the radial
velocity and its derivatives, and the viscosity
and its gradient It is assumed that we are
dealing with low speed (small circulation)
vortices, and thus the azimuthal velocity will
cause negligible changes in the pressure. Further-
more, we will assume that the radial velocity
and its derivatives and the viscosity and its
gradient do not appreciably contribute to the
radial pressure gradient. The latter assumption
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must be checked because of the very large tem-
perature gradients in the flow which could con-
ceivably generate substantial radial accelera-
tions and viscosity gradients. Based on these
assumptions the density variations are then
due mainly to heat conduction/temperature
effects; i.¢,, the effects of dynamics/pressure on
the density variation are negligible. We then
can assume, for the calculation of the density,
that the pressure is constant throughout the
flow field. This assumption allows the deter-
mination of the temperature, density, and
radial velocity to be made independently of the
dynamics of the flow. The dynamics, however,
are coupled to the preceding results through the
density, radial velocity, and temperature de-
pendent gas properties. This one-way un-
coupling of the thermodynamics from the
dynamics results in a great simplification in the
numerical solution.

The vorticity, & is a derived quantity ob-
tainable directly from the azimuthal velocity
distribution; ie., £ = (1/rX8/0r)rVy)

Analternate formulation of the problem would
be to derive a vorticity transport equation in
which the dependent variable is vorticity rather
than azimuthal velocity. This vorticity transport
equation must be valid for a compressible fluid
with variable viscosity. Solution of this equation
would yield the vorticity directly rather than
having to first calculate the azimuthal velocity
distribution and then use it to calculate the
vorticity. It is difficult to tell whether this
approach would either reduce the complexity of
the numerical solution or increase its accuracy.

Boundary conditions

Boundary conditions for the temperature,
radial velocity, and azimuthal velocity must be
specified on the t = 0 and r = 0 axes. Although
any initial distribution of temperature and vor-
ticity may be used, a step distribution is used
here with the discontinuity occurring at the
core edge. The assumption of no sources or
sinks of heat at the center of the vortex requires
that the first spatial derivative of temperature
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at the origin must always be zero. Thus, the
required initial conditions for the temperature
are:
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where a is the initial radius of the vortex core.

Similarly, since there are no sources or sinks
of mass at the center of the vortex, the radial
velocity at the origin must always be zero. The
initial radial velocity may be arbitrarily specified,
but to demonstrate the effect of the unsteady
heating on its generation, it will be taken as zero.
The boundary conditions on the radial velocity
are then:

¥{r, 0) = ¥(0,1) = 0. (6)

The initial azimuthal velocity distribution is
taken to be that which results in a vorticity
distribution which is uniform and concentrated
in the vortex core. The azimuthal velocity at the
center of the vortex is always zero, Thus,

Vg;,@):%({—’;) 0&:(»«{2)@
Vdr. 0 wfi( ) <42~>>i 7
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where I, is the initial circulation of the vortex.

The equations of motion and boundary
conditions are now non-dimensionalized with
respect to initial vortex core radius and initial
gas properties occurring in the cold region of the
vortex. The non-dimensional quantities are
denoted by circumflexed symbols, and the sub-
script, “o0”, refers to the reference conditions.
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The required non-dimensional quantities are :
P=via,f=to,/a®, T =T/T,,0 =00,
&= §§grg3 ﬁ = a‘if&'m‘ﬁ = f}!{ &
[ 7R & S S SO ey B 1
Vo = aVyiG o, ik = i, £ = Lidy, F =1,
and ¢ = na?é/I,

The non-dimensionalized equations of motion
are:

heat conduction,
06 06 (62@ 1 a@)
_;’+ﬁw"“'—0'—éFi“ ??{ (8)
continuity,
é 3
560 + 5 (pP7) =0 ©)
state,
ZpT =1 (10)

and azimuthal Navier-Stokes
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where Pr, is the reference Prandtl number.

The simultaneous partial differential equa.
tions (8}11) with the non-dimensionalized
version of the boundary conditions {57}
represent the formulation of the problem of
coupled diffusion of heat and vorticity in an
isolated, rectilinear, real gas vortex. Since the
diffusion processes discussed in this paper deal
with a highly non-linear system, the equations
describing this problem must be numerically
integrated for certain specific examples.

As the gas models become more complex, the
generality of the solutions becomes more re.
stricted. In the constant property or ideal gag
model, the type of gas is specified only through
the reference Prandtl number. This Prandt
number specification is required since the dif-
fusivities for heat and vorticity are related
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through the Prandtl number, and the dimen-
sionless time appearing on all the plots is based
on the reference thermal diffusivity. The tem-
perature ratio must also be specified, because
the magnitude of the radial convection contri-
bution to the overall diffusion process is de-
termined by the temperature/density variations.
In the variable property or real gas model, the
chemistry of the gas as well as the absolute
temperature levels must be specified because of
the dependence of the gas properties and density
on temperature. We have used the statistical
mechanical calculations of Hansen [3, 4] for
the high temperature properties of air. Although
more recent and possibly more accurate trans-
port property calculations are available, Hansen
presents his calculations in a curvefit form which
is ideal for use on a digital computer.

It should be noted that both the thermal
diffusivity and kinematic viscosity are not cons-
tant in the ideal gas model. They change in the
ideal gas model because of density variations
and change even further in the real gas model
because of variations in the thermodynamic
and transport properties.

A brief discussion of the numerical integration
technique is given in the appendix. A more
extensive discussion of the numerical method
of solution is contained in the doctoral disser-
tation of Mironer [5].

RESULTS

The results of the numerical solution of
equations (8)-(11) for a specific set of boundary
conditions are presented in this section in the
form of plots showing the variation of tempera-
ture, radial velocity, and vorticity with position
and time. Sets of these three plots are presented
for each of the two vortex heating cases and for
both of the gas models. The radial velocity plots
are included for completeness and to indicate
the contribution of the radial convection to the
overall diffusion processes. Also, crossplots
comparing the diffusion processes at the center
of the core for the various gas models in both the
vortex heating cases are presented.
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All quantities have been non-dimensional-
ized as indicated on each plot. Air is used as the
fluid for all calculations. The cold initial tem-
perature is taken to be 500°K which gives a
Prandtl number of 0-738. For a vortex having an
initial radius of 05 c¢cm, and an initial cold
region temperature of 500°K, 1 unit of dimen-
sionless time corresponds to about 05 sec,
and 1 unit of dimensionless velocity corresponds
to about 1 cm/s.

In the incompressible, constant property
gas model no coupling exists between the heat
and vorticity diffusion processes. The results for
the diffusion of an initially uniformly distributed,
instantaneous cylindrical source in an infinite,
constant property, incompressible mediumapply
for both diffusion processes. Carslaw and Jaeger
[€] present a plot for this type of diffusion process
using the numerically obtained results of Masters
[7] The curves of the temperature and vorticity
at the same times are simply shifted from one
another, depending on which diffusivity is
used in the non-dimensional time. These plots
will not be reproduced here; however, reference
will be made to them when discussing the results
of the coupled diffusion problem.

In the perfect gas, constant property gas
model (ideal gas) results are presented for a
15:1 initial temperature ratio across the vortex.
In the perfect gas, variable property gas model
(real gas) solutions have been carried out for a
7500°K hot region and 500°K cold region,
which is also a 15:1 temperature ratio.

Hot core vortex

Ideal gas model, Figs. 1, 2, and 3. The low
density core cools rapidly while the dense,
outer gas is heated very little because of the
relatively small amount of heat initially con-
tained in the core. The ideal gas model core
cools about ten times faster than that of the
incompressible vortex. Since the core is cooling
and becoming more dense, there must be an
inward convection of mass from the outer region
to furnish the extra gas required. The outside
region in the vicinity of the core edge is receiving
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heat from the hot core and its density falls
requiring an outwardly directed convection to
carry away the excess gas. It will be seen that in
both heating cases and for both gas models the
radial velocity in the region of the core always
opposes the primary diffusion of heat. At large
radial distances where the heat diffusion process
has not penetrated significantly, the radial
velocity has a potential decay. In the beginning
of the vorticity diffusion process, the large
inwardly directed radial velocity convects vor-
ticity from the outer region of the core into its
center and dominates the outwardly directed,
primary diffusion. However, as time progresses,
the radial velocity decreases, and the primary
diffusion process takes over. The initial *‘pump-
ing” of vorticity into the center of the core and
the decreasing kinematic viscosity due to the
increasing density slows the overall diffusion
of vorticity to the extent that it takes about the
same time as that required for completing the
vorticity diffusion process in the incompressible
vortex.

Real gas model, Figs. 4, 5, and 6. The low
density core cools more rapidly in the beginning
of the heat diffusion process than the ideal gas
core due to the very high value of the thermal
conductivity. The thermal conductivity is so
high that the temperature gradients are very
flat; however, in the outside region, where the
conductivity is low, the gradients are quite
steep. In the core region the vorticity distribution
exhibits the same general behaviour as in the
ideal gas solutions; ie., early in the diffusion
process, the very large inwardly directed radial
convection results in a net “pumping” of vor-
ticity into the center of the core. The vorticity
accumulation in the center of the core is not as
large as in the ideal gas vortex due to the counter-
acting effect of the very high kinematic viscosity
in the core which tends to rapidly diffuse the
vorticity outward. In the outside region, the
vorticity is slightly negative due to the de-
creased velocity there. The fluid particles in this
region are rotating about their centers of mass
in a direction opposite to those in the region of
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positive vorticity, while the centers of mass of all
the fluid particles continue to move with an
azimuthal velocity of the same direction. The
vorticity diffusion process takes about the same
length of time as that for the ideal and incom-
pressible gas vortices.

Figures 7 and 8, show comparisons of the
core center temperature and vorticity distri-
butions for the three gas models. The incom-
pressible vortex core begins to cool considerably
later than either of the compressible vortices
and also requires a considerably longer time
to cool. The vorticity “pumping” effect is
largest for the ideal gas vortex, but due to count-
eracting mechanisms, all gas models of the
hot core vortex require about the same amount
of time for the diffusion to be completed.

Cold core vortex

Ideal gas model, Figs. 9, 10, and 11. The dense
core heats up very slowly because of the large
mass of cold gas in it and the outwardly directed
radial convection of heat which opposes the
primary, inwardly directed diffusion. It takes
about the same time for the core to be heated to
near the outside temperature as the incom-
pressible vortex. The vorticity diffuses about ten
times faster than in the incompressible vortex
because of the outwardly directed radial velocity
which augments the primary diffusion and the
increasing kinematic viscosity due to the de-
creasing density.

Real gas model, Figs. 12, 13, and 14. In the
early part of the heat diffusion process, the
thermal diffusivity is very much lower in the cold
core than in the hot, outside region. The low
thermal diffusivity acts as a heat insulating
mechanism for the core, resulting in very steep
temperature gradients. This low thermal diffusi-
vity along with the high density core and the
large radial convection which opposes the
inwardly directed primary diffusion of heat
combine to keep the core temperature low in
the beginning of the diffusion process. However,
as times passes and the heat penetrates signifi-
cantly into the core, the thermal diffusivity
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rises, the density falls, and the radial convection
falls off causing the core to heat up faster and
faster. The only counteracting mechanism to
this accelerated heating of the core is the in-
creasing specific heat which requires increasingly
more heat to raise the core temperature by a
given amount. The flattening of the temperature
{density) gradients in the outside region due to
the large thermal conductivity there keeps the
radial velocity everywhere outwardly directed.
The vorticity diffusion is very much faster
than that in the ideal gas model because of the
rapidly increasing kinematic viscosity due to the
decreasing density and increasing viscosity.

Figures 15 and 1€ compare the core center
temperature and vorticity distributions for the
three gas models. In the ideal gas vortex, the
outward radial convection of heat nearly offsets
the increase in the core heating rate due to its
decreasing density. The rapidly increasing
thermal conductivity in the core is the main
effect in increasing the heat diffusion rate in the
real gas vortex over that of the ideal gas vortex.
The separate effects of radial convection and
increasing viscosity are shown quite clearly in
the vorticity plot.

CONCLUSIONS

The following general conclusions are drawn
from the theoretical analysis of a two-dimen-
sional, isolated vortex with moderate circulation
and initially large temperature differences be-
tween the core and outside regions.

(i) Compressibility substantially increases the
vorticity diffusion rate for the cold core vortex
and the heat diffusion rate for the hot core vortex,
but has little effect on the heat diffusion rate for
the cold core vortex and the vorticity diffusion
rate for the hot core vortex.

(ii) Temperature dependent gas properties
substantially increase the heat and vorticity
diffusion rates in the cold core vortex, but have
litile effect on either diffusion process in the hot
core vortex.

The following table summarizes the approxi-
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mate dimensionless diffusion times associated
with the various vortex heating situations and
gas models described in this paper.

Heat Vorticity
diffusion diffusion
Incompressible
hot core 100 100
Ideal gas,
hot core 10 106
Real gas,
hot core 10 160
Incompressible,
cold ¢core 100 100
Ideal gas,
cold core 150 10
Real gas,
cold core 10 431

VALIDITY OF NEGLECTING EFFECTS OF
PRESSURE ON DENSITY

The validity of the assumption neglecting the
effects of the radial acceleration and viscosity
gradients on the pressure gradient has been
checked by using the constant pressure distri-
butions of radial velocity, density, and viscosity
to calculate the pressure gradient from the radial
Navier-Stokes’ equation. Using the equation
of state, (3), in the form

Ap AP  AZT)

p P (ZT)°

the contribution of the temperature/compres-
sibility variation completely dominated the
contribution from the pressure variation. Even
in the beginning of the diffusion process when
the density is changing very rapidly at the edge of
the core and generating very large radial velocity
changes, the effect of the pressure on the density
is negligible,
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APPENDIX
Numerical Solution of Equations of Motion

Finite difference representation

The first step in the simultaneous numerical
solution of the differential equations is the re-
placement of the various differential coefficients
by truncated expansions of finite differences.
A rather judicious selection of the type of
difference expansion must be made in order to
ensure a stable numerical solution and also yield
the desired quantities for use in the other equa-
tions. The stability considerations are discussed
in various texts on numerical analysis such as
Noble [8].

The scheme of the numerical solution tech-
nique is as follows. The time/distance solution
space is divided into a rectangular mesh of nodal
points in which successive time nodal points are
separated by a time, 7, and successive spatial
nodal points by a distance, ¢, The location of the
various nodal points in the solution space is made
by the set of coordinates, (m, n), where # = me
and f = nt.

Since we are dealing with an infinite region, a
marching pattern is employed in which by using
quantities evaluated at previous nodal points,
new quantities are calculated at advanced
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nodal points. The direction of march is to calcu-
late quantities along a time line (n = constant),
moving from the origin outward (m increasing).
When all quantities are calculated at all the
nodal points possible on that time line, the
calculation then proceeds to the next time line,
starting once again at the origin and moving
outward.

The finite difference representation of the heat
conduction equation is obtained by replacing
the time derivative by the first term of a forward
difference expansion, the first spatial derivative
by the first term of a mean difference expansion,
and the second spatial derivative by the first
term of a central difference expansion. The heat
conduction equation then becomes

Omn+ 1) = ga(m, n)

* { |:<2mm+ 1> - G(:;, " Ve (m, n)]@(m +1,n)

2m—1 &
+ [( - >+0(m,n)V,(m,n):| (m— l,n)}

+ [1 — 2a0(m,n)]@(m, n) (12)

where o« = /6% and m, nare integers denoting the
coordinates of the various nodal points. For
simplicity, the circumflexes have now been
dropped, but all quantities are still non-dimen-
sional.

In order to obtain the radial velocity at the
desired nodal point and also a stable numerical
solution of the continuity equation, the time
derivative is replaced by the first term of a for-
ward difference expansion evaluated at the
(m — 1, n) nodal position and the spatial de-
rivative by the first term of a forward difference
expansion evaluated at the (m—1, n+ 1)
nodal position. Solving for the radial velocity
at the next spatial nodal point, one obtains

_(m—=N\{/pm—1,n+1)
V,(m,n+1)-< - ){( ot ) )
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pm — 1,n)
x Wtm - 1"+”+()[(p(mn+1))

om — L,n + 1)
(e b o

Finally, the azimuthal Navier—Stokes equation
is converted to finite difference form in an exactly
similar manner as the heat conduction equation,

Vdm,n + 1)

m+ 1 Pr, 2m — 1
o

+ a—(m n)} eV(m, n)] Vim + 1,n)

( )] e (s

(m n)} + eV(m, n)] Vidm — 1, n)

+[1—2a

where

S

+ L, n)}] Vm, ), (14)

wm + 1,n) — pw(m — 1, n)

L ) = =

The vorticity is obtained by using the first term
of a mean difference expansion to represent
the spatial derivative,

Hm,n) =é [('"—2;—1> Vim + 1,n)

-1

( I )V,,(m )] (15)
Method of solution

The following order of solution is followed
at each nodal point using previously calculated

or boundary quantities.
(1) The heat conduction equation, equation
(12), is evaluated using values of @ and V, from

the previous time line to obtain the value of @
at the new nodal point.
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(2) This new value of @ is converted to
temperature using a piecewise straightline fit to
the heat flux potential calculations for air from
[4].

(3) This temperature is used to obtain ¢, y, and
Z using curve-fits developed by Hansen [3].

(4) Z and Tare used in equation (10) to obtain p.

(5) p and previously caiculated values of p
and V, are used in equation (13) to calculate the
new V

This completes the thermodynamics and
property calculations at the new nodal point.
Now the dynamics are calculated at this point.

(€) Using previously calculated values of
V,, Vs and p in the azimuthal Navier—Stokes
equation (14), V, is calculated at the new nodal
point.

(7) & is now calculated from equation (15)
using previously calculated values of V;

Stability and accuracy of solution

It can be shown [8] that to ensure stability
in the numerical solution of a one-dimensional
diffusion type equation without convection,
o < 1/2¢. This requirement is simply extended
to variable diffusivity diffusion problems by
using the maximum value of the diffusivity
occurring in the flow field under consideration.
This requirement has been empirically checked
in our computer solutions and found to be valid.

In the beginning of the numerical solutions,
due to the discontinuity in density, the radial
velocity is excessively high and causes the solu-
tion to oscillate. In order to overcome this,
the radial velocity is artificially suppressed
for the first few time lines of the solution until
the density discontinuity has sufficiently
smoothed out to give a stable solution.

The effect of the mesh size on the accuracy of
the solution was studied by calculating solutions
for the incompressible gas model in which ¢ was
systematically reduced from 0-5 to 0-05. These
solutions were then compared with the plotted
results for this gas model given in Carslaw and
Jaeger [6] and also with the simple, closed-form
solution to the diffusion equation for this gas
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model which may be obtained only at the center
of the vortex (ra=0). It was found that
g = (-1 gave excellent agreement and yet did
not prohibitively increase the overall calculation
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time. Based on this comparison, it might not be incompressible gas model.

Résumé —Cet article décrit la diffusion couplée de la chaleur et de la vorticité dans un tourbillon gazeux a
haute température et & faible vitesse. Le couplage est provoqué a la fois par la convection radiale massique
provenant du chauffage instantionnaire du gaz et par la dépendance de la température en fonction des
propriétés du gaz. Les résultats numériques ont été obtenus en résolvant simultanément les équations de
conduction de la chaleur, de continuité et de Navier-Stokes dans le fluide sur une calculateur numérique
en employant une technique de différences finies. Des solution sont présentées pour deux cas de chauffage
du tourbillon: 1°) un noyau initialement chaud avec une région extérieure irrotationnelle froide et, 2°) un
noyau initialement froid avec une région extérieure irrotationnelle chaude. Afin de mieux comprendre les
processus de couplage, deux modeles gazeux sont considérés: 1) un gaz parfair avec des propriétés
thermodynamiques et de transport constantes et 2°) un gaz parfait avec des propriétés thermodynamiques
et de transport dépendant de la température. On a trouvé que la compressibilité augmente la vitesse de
diffusion de la vorticité dans le tourbillon a noyau froid et de la diffusion de chaleur dans le tourbillon a
noyau froid et de la diffusion de chaleur dans le tourbillon & noyau chaud par rapport & un tourbillon
incompressible. De plus, la dépendance des propriétés du gaz en fonction de la température augmente les
vitesses de difussion a la fois de la chaleur et de vorticité seulement dans le tourbillon froid.

Zusammenfassung—Der Aufsatz beschreibt die gekoppelte Ubertragung von Wirme und Drehimpuls in
einem Gaswirbel hoher Temperatur und niedriger Geschwindigkeit. Die koppelung entsteht einmal durch
die radiale Konvektion auf Grund der ungleichférmigen Erhitzung und zum anderen durch die Tempera-
turabhingigkeit der Gaseigenschaften. Es wurden numerische Ergebnisse erzielt durch die simultane
Losung der Wirmeleitungs-, der Kontinuitéts- und der Navier—Stokes’schen Gleichungen auf einer digi-
talen Rechenanlage mit Hilfe einer Differenzenmethode. Es sind Losungen fiir zwei Félle der Aufheizung
eines Wirbels wiedergegeben: 1) anfangs ein heisser Wirbelkern mit kalter, nichtrotierender dusserer
Schicht und 2) anfangs kalter Wirbelkern mit heisser, nichtrotierender dusserer Schicht. Um die Koppelungs-
vorgidnge besse zu durchleuchten, wurden zwei Gasmodelle betrachtet: 1) ideales Gas mit konstanten
thermodynamischen und Transporteigenschaften und 2) ideales Gas mit temperaturbhiingigen thermo-
dynamischen und Transport-Eigenschaften. Es zeigte sich, dass die Kompressibilitit im Falle des kalten
Wirbelkerns die Warmeiibertragung steigert verglichen mit einer Wirbelstrémung in einem inkompressi-
blen Medium. Die Temperaturabhéngigkeit der Gaseigenschaften steigert den Transport von Wirme und
Impuls nur im Falle des kaiten Wirbelkerns.

AnnoTanusa—B crarbe olMCEIBaeTCA CBA3AHHAA TIUPY3HA TenIa I 3aBUXPEHHOCTH B BHICOKO-
TEMIIEPATYPHOM, T'Q30BOM BUXPE IDH MaJoif CKOPOCTH IBMKeHMA rasa. CBA3b BHI3BIBAETCH
PaaMaNIbHOM KOHBeKI[Heit MAcCHl B pe3yIbTaTe HeCTAIHOHAPHOTO HArpeBa rasa H TeMIepaTyp-
HOI 3aBUCHMOCTBIO CBOMCTB rana. Unciequsie pe3yIbTaTe MOJYUYEHBl MVTEM OXHOBPEMEHHOTO
penleHns ypaBHeHUit SHepTUM HepaspuhBHOCTM M ypaBHenuit Hasbe—Crokca Ha uudpopoit
BRIYMCJIMTENLHOM MalIuHe ¢ MOMOLILIO METO/[8 KOHeUHHIX pasHocrelf. IIpencTaBiessl petieHHs
A JBYX CIyyaeB BHXPeBOro HarpeBa: (1) mepBoHayajbHO ropsvee SAPO ¢ XOJOIHOI,
HeBpallalIeics BHeNIHelt ofacTeio 1 (2) MepBOHAYATBLHO XOJIOJIHOE SAPOH ¢ rOpAdYel He-
Bpanaolleiica BHemHel obnacteio. To0R aydine MOHUTH CBA3L NPOLUECCOB, paccMaTpi-
BawTca (1) ugeanpHEl ra3 ¢ MOCTOAHHBIME TePMOJMHAMIYECKNMI CBOHCTBAMIL 1 CBOMCTBAMI
nepenoca u (2) 1TeanbHpl ra3 ¢ TepMOJHHAMIECKUMH CBOMHCTBAMI It CBOMCTBAMK lepeHoCca,
3aBUCHMBIMM OT TemirepaTypsl. HaitmeHo, uTo cikUMAaeMOCTb YBeIIUITBAET CROPOCTDh AUPPY3HM
3aBUXPEHHOCTH B BUXPE C FOPAYNM APOM 110 CPABHEHMIO ¢ DTOH CKOPOCTBIO B CIYYae BHXpa
B HECKMMAaeMOM rase. 3aBUCUMBIE OT TeMIIepaTyphl CBOICTBA ras3a YBeIMYHBAKT CKOPOCTH
AupPysun KaK Tensa, Tak ¥ 3aBUXPEHHOCTH TOJBKO B XOJOJHOM BHXpe.

unreasonable to hope that this accuracy would
also extend to the more complicated gas models
since the values of the pertinent variables are
not changed that drastically from those of the



